Basistext - Kurvendiskussion

In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte vorgestellt. Normalerweise werden sie in der angegeben Reihenfolge abgearbeitet.

Definitionsbereich

Normalerweise nimmt man für den Definitionsbereich alle Reellen Zahlen an. Dieser Bereich kann jedoch eingeschränkt sein:

Der Nenner eines Bruches darf nicht 0 sein

Beispiel:
$$f(x) = \frac{3}{2x+4}$$
 $D = R \setminus \{-2\}$

$$D = R \setminus \{-2\}$$

- Der natürliche Logarithmus ist nur für Werte größer 0 definiert

Beispiel:
$$f(x) = \ln(x +$$

$$f(x) = \ln(x+2)$$
 $D = \{x \in R \mid x > -2\}$

Der Ausdruck unter einem Wurzelzeichen darf nicht negativ sein

$$f(x) = \sqrt{x - 2}$$

Beispiel:
$$f(x) = \sqrt{x-2}$$
 $D = \{x \in R \mid x \ge 2\}$

Schnittpunkte mit den Koordinatenachsen

Den Schnittpunkt mit der y-Achse erhält man, indem man x := 0 setzt.

Die Schnittpunkte mit der x-Achse erhält man, indem man die Funktion f(x) gleich 0 setzt.

Beispiel: f(x) = 3x - 2

f(0) = -2 f(x) schneidet die y-Achse im Punkt (0;-2).

f(x) = 0 => 3x - 2 = 0 => $x = \frac{2}{3}$

f(x) schneidet die x-Achse im Punkt $(\frac{2}{3};0)$.

Symmetrien

Man untersucht gewöhnlich auf zwei Symmetrietypen:

- Spiegelung an der y-Achse

Es gilt: f(x) = f(-x)

Beispiel:

$$f(x) = x^2 + 3 = (-x)^2 + 3 = f(-x)$$

- Punktsymmetrie am Ursprung

Es gilt: f(x) = -f(-x)

Beispiel:

 $f(x) = x^3 = -(-x)^3 = -f(-x)$

Monotonie

Eine Funktion f(x) ist monoton steigend, wenn gilt: $f'(x) \ge 0$. Sie ist streng monoton steigend, wenn gilt: f'(x) > 0.

Eine Funktion f(x) ist monoton fallend, wenn gilt: $f'(x) \le 0$. Sie ist streng monoton fallend, wenn gilt: f'(x) < 0.

Beispiel:

$$f(x) = x^2 + 1$$

$$f'(x) = 2x$$

 \Rightarrow für x > 0 gilt: f'(x) > 0 => f(x) ist streng monoton steigend.

 \Rightarrow für x < 0 gilt: f'(x) < 0 => f(x) ist streng monoton fallend.

Krümmung

Eine Funktion f(x) ist linksgekrümmt, wenn gilt: $f''(x) \ge 0$.

Eine Funktion f(x) ist rechtsgekrümmt, wenn gilt: $f''(x) \le 0$.

Beispiel:

$$f(x) = x^2 - 5x + 1$$

$$f'(x) = 2x - 5$$

f''(x) = 2 => $f''(x) \ge 0$ => f(x) ist linksgekrümmt.

Extrema

Unter Extrema versteht man die Hoch- und Tiefpunkte einer stetig differenzierbaren Funktion.

Zur Berechnung der Extrema muss man die Begriffe "notwendige Bedingung" und "hinreichende Bedingung" verstehen.

Beispiel:

Für die Behauptung x = 2 ist die Aussage $x^2 = 4$ eine notwendige Bedingung. Wenn diese Bedingung nicht erfüllt ist kann x nicht 2 sein. Jedoch reicht diese Bedingung als Beweis nicht aus, denn x kann schließlich auch -2 sein. Um x = 2 zu beweisen braucht man eine weitere "hinreichende" Bedingung. Diese könnte z.B. x > 0 sein. Damit ist x = 2 eindeutig bewiesen.

Für eine Funktion f(x) ist f'(x) = 0 eine notwendige Bedingung. Ist gleichzeitig $f''(x) \neq 0$, so liegt ein Extremum vor. Dabei gilt: Ist f''(x) > 0, so liegt ein Minimum vor; ist f''(x) < 0, so liegt ein Maximum vor.

Beispiel:

$$f(x) = x^2 + 2x + 1$$

 $f'(x) = 2x + 2$ $2x + 2 = 0$ $=> x = -1$
 $f''(x) = 2$ $=> f''(-1) = 2$

 \Rightarrow Es liegt an der Stelle x = -1 ein Minimum vor.

Ergibt auch die zweite Ableitung 0, so muss man weiter untersuchen, also weiter ableiten. Gilt $f'''(x) \neq 0$, so liegt jedoch ein Sattelpunkt vor (siehe Abschnitt Wendestellen).

Beispiel:

$$f(x) = x^4$$

 $f'(x) = 4x^3$ => $4x^3 = 0$ => $x = 0$
 $f'''(x) = 12x^2$ => $f'''(0) = 0$
 $f'''(x) = 24x$ => $f''''(0) = 0$
 $f^{(4)}(x) = 24$ => $f^{(4)}(0) = 24 > 0$

Es liegt an der Stelle x = 0 ein Minimum vor.

Wendestellen

An einer Wendestelle wechselt der Graph von einer Funktion f(x) von einer Rechts- zu einer Linkskrümmung oder umgekehrt.

Die notwendige Bedingung ist: f''(x) = 0

Die hinreichende Bedingung ist: $f'''(x) \neq 0$

Beispiel:

$$f(x) = 2x^3 + x - 1$$

$$f'(x) = 6x^2 + 1$$

$$f''(x) = 12x$$
 => $12x = 0$ => $x = 0$

$$f'''(x) = 12 => f'''(0) = 12 \neq 0$$

An der Stelle x = 0 liegt eine Wendestelle vor.

Gilt für eine Funktion f(x) zusätzlich f'(x) = 0, so nennt man die Wendestelle auch "Sattelpunkt". Dieses ist beispielsweise bei der Funktion $f(x) = x^3$ der Fall.

Verhalten im Unendlichen

Untersucht wird das Verhalten einer Funktion f(x), wenn x gegen unendlich bzw. minus-unendlich läuft.

Beispiel:

$$f(x) = \frac{2x+1}{3x+2}$$

$$\lim_{x \to \infty} (f(x)) = \frac{2}{3}$$

$$\lim_{x \to -\infty} (f(x)) = \frac{-2}{-3} = \frac{2}{3}$$

In beiden Fällen nähert sich die Funktion dem Wert $\frac{2}{3}$ an. Man spricht von einem Grenzwert.

Polstellen

Man spricht von einer Polstelle, wenn eine Definitionslücke aus einem Punkt besteht und die Funktion in der Umgebung der Stelle ins Unendliche wachsen bzw. negativ-Unendliche fallen.

Eine gebrochen-rationale Funktion f(x) hat an einer Stelle x_0 eine Polstelle, wenn der Nenner bei x_0 eine Nullstelle hat und der Zähler bei x_0 eine Nullstelle niedrigerer Ordnung oder keine Nullstelle hat.

Beispiel

$$f(x) = \frac{2x}{x^2 - 1}$$

Der Nenner hat die Nullstellen $x_1 = 1$ und $x_2 = -1$.

Der Zähler hat an beiden Stellen keine Nullstellen.

Damit liegen zwei Polstellen vor.

Haben der Zähler und Nenner an der gleichen Stelle x_0 eine Nullstelle und ist die Ordnung der Nullstelle beim Zähler nicht kleiner als beim Nenner, so liegt eine stetig behebbare Lücke vor.

Beispiel:

$$f(x) = \frac{x-3}{x^2-9} = \frac{x-3}{(x-3)(x+3)}$$

Die Funktion hat an der Stelle x = -3 eine Polstelle.

Die Funktion hat an der Stelle x = 3 eine stetig behebbare Lücke.